\(\int \frac {1}{x (a+b x^2) (c+d x^2)^{3/2}} \, dx\) [718]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 107 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {d}{c (b c-a d) \sqrt {c+d x^2}}-\frac {\text {arctanh}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a c^{3/2}}+\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{a (b c-a d)^{3/2}} \]

[Out]

-arctanh((d*x^2+c)^(1/2)/c^(1/2))/a/c^(3/2)+b^(3/2)*arctanh(b^(1/2)*(d*x^2+c)^(1/2)/(-a*d+b*c)^(1/2))/a/(-a*d+
b*c)^(3/2)-d/c/(-a*d+b*c)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {457, 87, 162, 65, 214} \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{a (b c-a d)^{3/2}}-\frac {\text {arctanh}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a c^{3/2}}-\frac {d}{c \sqrt {c+d x^2} (b c-a d)} \]

[In]

Int[1/(x*(a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-(d/(c*(b*c - a*d)*Sqrt[c + d*x^2])) - ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]]/(a*c^(3/2)) + (b^(3/2)*ArcTanh[(Sqrt[b
]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(a*(b*c - a*d)^(3/2))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 87

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[f*((e + f*x)^(p +
 1)/((p + 1)*(b*e - a*f)*(d*e - c*f))), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[(b*d*e - b*c*f - a*d*f - b*
d*f*x)*((e + f*x)^(p + 1)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {1}{x (a+b x) (c+d x)^{3/2}} \, dx,x,x^2\right ) \\ & = -\frac {d}{c (b c-a d) \sqrt {c+d x^2}}+\frac {\text {Subst}\left (\int \frac {b c-a d-b d x}{x (a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )}{2 c (b c-a d)} \\ & = -\frac {d}{c (b c-a d) \sqrt {c+d x^2}}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^2\right )}{2 a c}-\frac {b^2 \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )}{2 a (b c-a d)} \\ & = -\frac {d}{c (b c-a d) \sqrt {c+d x^2}}+\frac {\text {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{a c d}-\frac {b^2 \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{a d (b c-a d)} \\ & = -\frac {d}{c (b c-a d) \sqrt {c+d x^2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a c^{3/2}}+\frac {b^{3/2} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{a (b c-a d)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.99 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {d}{c (-b c+a d) \sqrt {c+d x^2}}+\frac {b^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {-b c+a d}}\right )}{a (-b c+a d)^{3/2}}-\frac {\text {arctanh}\left (\frac {\sqrt {c+d x^2}}{\sqrt {c}}\right )}{a c^{3/2}} \]

[In]

Integrate[1/(x*(a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

d/(c*(-(b*c) + a*d)*Sqrt[c + d*x^2]) + (b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[-(b*c) + a*d]])/(a*(-(b*
c) + a*d)^(3/2)) - ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]]/(a*c^(3/2))

Maple [A] (verified)

Time = 2.99 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.94

method result size
pseudoelliptic \(\frac {b^{2} \arctan \left (\frac {b \sqrt {d \,x^{2}+c}}{\sqrt {\left (a d -b c \right ) b}}\right )}{\left (a d -b c \right ) a \sqrt {\left (a d -b c \right ) b}}+\frac {d}{\left (a d -b c \right ) c \sqrt {d \,x^{2}+c}}-\frac {\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{\sqrt {c}}\right )}{a \,c^{\frac {3}{2}}}\) \(101\)
default \(\frac {\frac {1}{c \sqrt {d \,x^{2}+c}}-\frac {\ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {d \,x^{2}+c}}{x}\right )}{c^{\frac {3}{2}}}}{a}-\frac {-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {2 d \sqrt {-a b}\, \left (2 d \left (x -\frac {\sqrt {-a b}}{b}\right )+\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{2 a}-\frac {-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}-\frac {2 d \sqrt {-a b}\, \left (2 d \left (x +\frac {\sqrt {-a b}}{b}\right )-\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}}{2 a}\) \(773\)

[In]

int(1/x/(b*x^2+a)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/(a*d-b*c)*b^2/a/((a*d-b*c)*b)^(1/2)*arctan(b*(d*x^2+c)^(1/2)/((a*d-b*c)*b)^(1/2))+d/(a*d-b*c)/c/(d*x^2+c)^(1
/2)-arctanh((d*x^2+c)^(1/2)/c^(1/2))/a/c^(3/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 192 vs. \(2 (89) = 178\).

Time = 0.45 (sec) , antiderivative size = 959, normalized size of antiderivative = 8.96 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\left [-\frac {4 \, \sqrt {d x^{2} + c} a c d + {\left (b c^{2} d x^{2} + b c^{3}\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \, {\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2} + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) - 2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {c} \log \left (-\frac {d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right )}{4 \, {\left (a b c^{4} - a^{2} c^{3} d + {\left (a b c^{3} d - a^{2} c^{2} d^{2}\right )} x^{2}\right )}}, -\frac {4 \, \sqrt {d x^{2} + c} a c d - 4 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c}}{\sqrt {d x^{2} + c}}\right ) + {\left (b c^{2} d x^{2} + b c^{3}\right )} \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \, {\left (2 \, b^{2} c^{2} - 3 \, a b c d + a^{2} d^{2} + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )} \sqrt {d x^{2} + c} \sqrt {\frac {b}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, {\left (a b c^{4} - a^{2} c^{3} d + {\left (a b c^{3} d - a^{2} c^{2} d^{2}\right )} x^{2}\right )}}, -\frac {2 \, \sqrt {d x^{2} + c} a c d + {\left (b c^{2} d x^{2} + b c^{3}\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b}{b c - a d}}}{2 \, {\left (b d x^{2} + b c\right )}}\right ) - {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {c} \log \left (-\frac {d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {c} + 2 \, c}{x^{2}}\right )}{2 \, {\left (a b c^{4} - a^{2} c^{3} d + {\left (a b c^{3} d - a^{2} c^{2} d^{2}\right )} x^{2}\right )}}, -\frac {2 \, \sqrt {d x^{2} + c} a c d + {\left (b c^{2} d x^{2} + b c^{3}\right )} \sqrt {-\frac {b}{b c - a d}} \arctan \left (\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {b}{b c - a d}}}{2 \, {\left (b d x^{2} + b c\right )}}\right ) - 2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {-c}}{\sqrt {d x^{2} + c}}\right )}{2 \, {\left (a b c^{4} - a^{2} c^{3} d + {\left (a b c^{3} d - a^{2} c^{2} d^{2}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(d*x^2 + c)*a*c*d + (b*c^2*d*x^2 + b*c^3)*sqrt(b/(b*c - a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*
b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 - 4*(2*b^2*c^2 - 3*a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2
)*sqrt(d*x^2 + c)*sqrt(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)) - 2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*
sqrt(c)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2))/(a*b*c^4 - a^2*c^3*d + (a*b*c^3*d - a^2*c^2*d^2)*
x^2), -1/4*(4*sqrt(d*x^2 + c)*a*c*d - 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(-c)*arctan(sqrt(-c)/sqrt(d*
x^2 + c)) + (b*c^2*d*x^2 + b*c^3)*sqrt(b/(b*c - a*d))*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(
4*b^2*c*d - 3*a*b*d^2)*x^2 - 4*(2*b^2*c^2 - 3*a*b*c*d + a^2*d^2 + (b^2*c*d - a*b*d^2)*x^2)*sqrt(d*x^2 + c)*sqr
t(b/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(a*b*c^4 - a^2*c^3*d + (a*b*c^3*d - a^2*c^2*d^2)*x^2), -1/2*(2
*sqrt(d*x^2 + c)*a*c*d + (b*c^2*d*x^2 + b*c^3)*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d*
x^2 + c)*sqrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) - (b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(c)*log(-(d*x^2 - 2
*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2))/(a*b*c^4 - a^2*c^3*d + (a*b*c^3*d - a^2*c^2*d^2)*x^2), -1/2*(2*sqrt(d*x^
2 + c)*a*c*d + (b*c^2*d*x^2 + b*c^3)*sqrt(-b/(b*c - a*d))*arctan(1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d*x^2 + c)*s
qrt(-b/(b*c - a*d))/(b*d*x^2 + b*c)) - 2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(-c)*arctan(sqrt(-c)/sqrt(d
*x^2 + c)))/(a*b*c^4 - a^2*c^3*d + (a*b*c^3*d - a^2*c^2*d^2)*x^2)]

Sympy [A] (verification not implemented)

Time = 5.98 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.32 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\begin {cases} \frac {2 \left (\frac {d^{2}}{2 c \sqrt {c + d x^{2}} \left (a d - b c\right )} + \frac {b d \operatorname {atan}{\left (\frac {\sqrt {c + d x^{2}}}{\sqrt {\frac {a d - b c}{b}}} \right )}}{2 a \sqrt {\frac {a d - b c}{b}} \left (a d - b c\right )} + \frac {d \operatorname {atan}{\left (\frac {\sqrt {c + d x^{2}}}{\sqrt {- c}} \right )}}{2 a c \sqrt {- c}}\right )}{d} & \text {for}\: d \neq 0 \\\frac {\operatorname {atan}{\left (\frac {2 \left (\frac {a}{2 b} + x^{2}\right )}{\sqrt {- \frac {a^{2}}{b^{2}}}} \right )}}{b c^{\frac {3}{2}} \sqrt {- \frac {a^{2}}{b^{2}}}} & \text {otherwise} \end {cases} \]

[In]

integrate(1/x/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Piecewise((2*(d**2/(2*c*sqrt(c + d*x**2)*(a*d - b*c)) + b*d*atan(sqrt(c + d*x**2)/sqrt((a*d - b*c)/b))/(2*a*sq
rt((a*d - b*c)/b)*(a*d - b*c)) + d*atan(sqrt(c + d*x**2)/sqrt(-c))/(2*a*c*sqrt(-c)))/d, Ne(d, 0)), (atan(2*(a/
(2*b) + x**2)/sqrt(-a**2/b**2))/(b*c**(3/2)*sqrt(-a**2/b**2)), True))

Maxima [F]

\[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}^{\frac {3}{2}} x} \,d x } \]

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*(d*x^2 + c)^(3/2)*x), x)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.03 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {b^{2} \arctan \left (\frac {\sqrt {d x^{2} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{{\left (a b c - a^{2} d\right )} \sqrt {-b^{2} c + a b d}} - \frac {d}{{\left (b c^{2} - a c d\right )} \sqrt {d x^{2} + c}} + \frac {\arctan \left (\frac {\sqrt {d x^{2} + c}}{\sqrt {-c}}\right )}{a \sqrt {-c} c} \]

[In]

integrate(1/x/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-b^2*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/((a*b*c - a^2*d)*sqrt(-b^2*c + a*b*d)) - d/((b*c^2 - a*c*d
)*sqrt(d*x^2 + c)) + arctan(sqrt(d*x^2 + c)/sqrt(-c))/(a*sqrt(-c)*c)

Mupad [B] (verification not implemented)

Time = 6.23 (sec) , antiderivative size = 2296, normalized size of antiderivative = 21.46 \[ \int \frac {1}{x \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\text {Too large to display} \]

[In]

int(1/(x*(a + b*x^2)*(c + d*x^2)^(3/2)),x)

[Out]

(atan((((-b^3*(a*d - b*c)^3)^(1/2)*(((c + d*x^2)^(1/2)*(4*b^8*c^8*d^2 - 16*a*b^7*c^7*d^3 + 26*a^2*b^6*c^6*d^4
- 22*a^3*b^5*c^5*d^5 + 10*a^4*b^4*c^4*d^6 - 2*a^5*b^3*c^3*d^7))/2 - ((-b^3*(a*d - b*c)^3)^(1/2)*(18*a^3*b^6*c^
8*d^4 - 4*a^2*b^7*c^9*d^3 - 32*a^4*b^5*c^7*d^5 + 28*a^5*b^4*c^6*d^6 - 12*a^6*b^3*c^5*d^7 + 2*a^7*b^2*c^4*d^8 +
 ((-b^3*(a*d - b*c)^3)^(1/2)*(c + d*x^2)^(1/2)*(16*a^2*b^8*c^11*d^2 - 88*a^3*b^7*c^10*d^3 + 200*a^4*b^6*c^9*d^
4 - 240*a^5*b^5*c^8*d^5 + 160*a^6*b^4*c^7*d^6 - 56*a^7*b^3*c^6*d^7 + 8*a^8*b^2*c^5*d^8))/(4*a*(a*d - b*c)^3)))
/(2*a*(a*d - b*c)^3))*1i)/(a*(a*d - b*c)^3) + ((-b^3*(a*d - b*c)^3)^(1/2)*(((c + d*x^2)^(1/2)*(4*b^8*c^8*d^2 -
 16*a*b^7*c^7*d^3 + 26*a^2*b^6*c^6*d^4 - 22*a^3*b^5*c^5*d^5 + 10*a^4*b^4*c^4*d^6 - 2*a^5*b^3*c^3*d^7))/2 - ((-
b^3*(a*d - b*c)^3)^(1/2)*(4*a^2*b^7*c^9*d^3 - 18*a^3*b^6*c^8*d^4 + 32*a^4*b^5*c^7*d^5 - 28*a^5*b^4*c^6*d^6 + 1
2*a^6*b^3*c^5*d^7 - 2*a^7*b^2*c^4*d^8 + ((-b^3*(a*d - b*c)^3)^(1/2)*(c + d*x^2)^(1/2)*(16*a^2*b^8*c^11*d^2 - 8
8*a^3*b^7*c^10*d^3 + 200*a^4*b^6*c^9*d^4 - 240*a^5*b^5*c^8*d^5 + 160*a^6*b^4*c^7*d^6 - 56*a^7*b^3*c^6*d^7 + 8*
a^8*b^2*c^5*d^8))/(4*a*(a*d - b*c)^3)))/(2*a*(a*d - b*c)^3))*1i)/(a*(a*d - b*c)^3))/(2*b^7*c^6*d^3 - 6*a*b^6*c
^5*d^4 + 6*a^2*b^5*c^4*d^5 - 2*a^3*b^4*c^3*d^6 + ((-b^3*(a*d - b*c)^3)^(1/2)*(((c + d*x^2)^(1/2)*(4*b^8*c^8*d^
2 - 16*a*b^7*c^7*d^3 + 26*a^2*b^6*c^6*d^4 - 22*a^3*b^5*c^5*d^5 + 10*a^4*b^4*c^4*d^6 - 2*a^5*b^3*c^3*d^7))/2 -
((-b^3*(a*d - b*c)^3)^(1/2)*(18*a^3*b^6*c^8*d^4 - 4*a^2*b^7*c^9*d^3 - 32*a^4*b^5*c^7*d^5 + 28*a^5*b^4*c^6*d^6
- 12*a^6*b^3*c^5*d^7 + 2*a^7*b^2*c^4*d^8 + ((-b^3*(a*d - b*c)^3)^(1/2)*(c + d*x^2)^(1/2)*(16*a^2*b^8*c^11*d^2
- 88*a^3*b^7*c^10*d^3 + 200*a^4*b^6*c^9*d^4 - 240*a^5*b^5*c^8*d^5 + 160*a^6*b^4*c^7*d^6 - 56*a^7*b^3*c^6*d^7 +
 8*a^8*b^2*c^5*d^8))/(4*a*(a*d - b*c)^3)))/(2*a*(a*d - b*c)^3)))/(a*(a*d - b*c)^3) - ((-b^3*(a*d - b*c)^3)^(1/
2)*(((c + d*x^2)^(1/2)*(4*b^8*c^8*d^2 - 16*a*b^7*c^7*d^3 + 26*a^2*b^6*c^6*d^4 - 22*a^3*b^5*c^5*d^5 + 10*a^4*b^
4*c^4*d^6 - 2*a^5*b^3*c^3*d^7))/2 - ((-b^3*(a*d - b*c)^3)^(1/2)*(4*a^2*b^7*c^9*d^3 - 18*a^3*b^6*c^8*d^4 + 32*a
^4*b^5*c^7*d^5 - 28*a^5*b^4*c^6*d^6 + 12*a^6*b^3*c^5*d^7 - 2*a^7*b^2*c^4*d^8 + ((-b^3*(a*d - b*c)^3)^(1/2)*(c
+ d*x^2)^(1/2)*(16*a^2*b^8*c^11*d^2 - 88*a^3*b^7*c^10*d^3 + 200*a^4*b^6*c^9*d^4 - 240*a^5*b^5*c^8*d^5 + 160*a^
6*b^4*c^7*d^6 - 56*a^7*b^3*c^6*d^7 + 8*a^8*b^2*c^5*d^8))/(4*a*(a*d - b*c)^3)))/(2*a*(a*d - b*c)^3)))/(a*(a*d -
 b*c)^3)))*(-b^3*(a*d - b*c)^3)^(1/2)*1i)/(a*(a*d - b*c)^3) - atanh((6*b^7*c^7*d^3*(c + d*x^2)^(1/2))/((c^3)^(
1/2)*(6*b^7*c^6*d^3 - 24*a*b^6*c^5*d^4 - 2*a^5*b^2*c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b^4*c^3*d^6 + 12*a^4*b^
3*c^2*d^7)) - (24*a*b^6*c^6*d^4*(c + d*x^2)^(1/2))/((c^3)^(1/2)*(6*b^7*c^6*d^3 - 24*a*b^6*c^5*d^4 - 2*a^5*b^2*
c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b^4*c^3*d^6 + 12*a^4*b^3*c^2*d^7)) + (38*a^2*b^5*c^5*d^5*(c + d*x^2)^(1/2)
)/((c^3)^(1/2)*(6*b^7*c^6*d^3 - 24*a*b^6*c^5*d^4 - 2*a^5*b^2*c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b^4*c^3*d^6 +
 12*a^4*b^3*c^2*d^7)) - (30*a^3*b^4*c^4*d^6*(c + d*x^2)^(1/2))/((c^3)^(1/2)*(6*b^7*c^6*d^3 - 24*a*b^6*c^5*d^4
- 2*a^5*b^2*c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b^4*c^3*d^6 + 12*a^4*b^3*c^2*d^7)) + (12*a^4*b^3*c^3*d^7*(c +
d*x^2)^(1/2))/((c^3)^(1/2)*(6*b^7*c^6*d^3 - 24*a*b^6*c^5*d^4 - 2*a^5*b^2*c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b
^4*c^3*d^6 + 12*a^4*b^3*c^2*d^7)) - (2*a^5*b^2*c^2*d^8*(c + d*x^2)^(1/2))/((c^3)^(1/2)*(6*b^7*c^6*d^3 - 24*a*b
^6*c^5*d^4 - 2*a^5*b^2*c*d^8 + 38*a^2*b^5*c^4*d^5 - 30*a^3*b^4*c^3*d^6 + 12*a^4*b^3*c^2*d^7)))/(a*(c^3)^(1/2))
 - d/((c + d*x^2)^(1/2)*(b*c^2 - a*c*d))